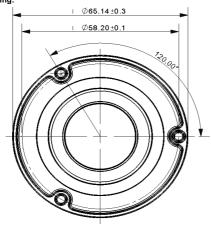
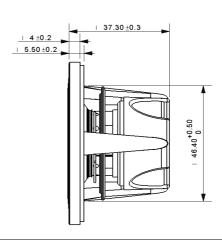


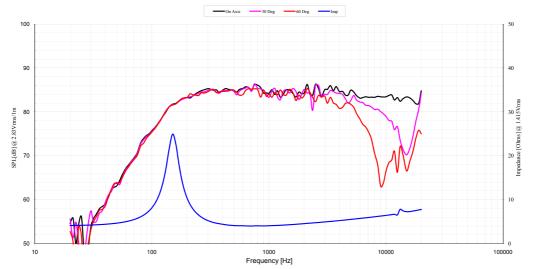
Model Number: NE65W-04 Revision: Rev 2_0
Product Line: Peerless Platinum Date: 18-Mar-10




Product Description:

This 2 inch 4 ohm member of the NE family has leading-edge transducer technology packaged in a cutting edge, stylistic design. The full-range drivers in this family feature an innovative cast aluminium basket design which minimizes acoustic reflections inside the driver, through large basket windows and sculpted basket spokes. The basket also is designed to act as a highly coupled heat sink to the Neodymium-Iron-Boron magnet (NdFeB) motor, so as to improve power handling capacity. The cone is aluminium, with a butyl rubber surround designed through finite element analysis for linearity of performance. The voice coil bobbin is titanium, for improved performance. The FEA-designed motor features copper caps to minimize inductance and extend performance to high frequencies.

Mechanical 2D Drawing:



Specifications:

DC Resistance	R _{evc}	Ω	3.7	5.0%	Energy Bandwidth Product	EBP	$(1/Q_{es}) \cdot f_s$	224
Minimum Impedance	Z_{min}	Ω	4.0	7.5%	Moving Mass	M _{ms}	g	1.58
Voice Coil Inductance	L _e	mH	0.04		Suspension Compliance	C_{ms}	um/N	583.7
Resonant Frequency	fs	Hz	166	15.0%	Effective Cone Diameter	D	cm	4.3
Mechanical Q Factor	Q_{ms}	-	5.0		Effective Piston Area	S_D	cm ²	14.7
Electrical Q Factor	Q_{es}	-	0.74		Equivalent Volume	V _{as}	L	0.18
Total Q Factor	Q_{ts}	-	0.65		Motor Force Factor	BL	T·m	2.85
Ratio f _s / Q _{ts}	F	f_s / Q_{ts}	257		Motor Efficiency Factor	β	$(T \cdot m^2)/\Omega$	2.22
Half Space Sensitivity @ 2.83V	dB@2.83V/1m	dB	85.7	+/-1.0 1	Voice Coil Former Material	VC_{fm}	-	TiSV
Sensitivity @ 1W/1m	1W/1m	dB	82.2	+/-1.0 ¹	Voice Coil Inner Diameter	VC _d	mm	25.7
					Gap Height	Gh	mm	3.0
Rated Noise Power (IEC 2685 18.1)	P	W	20		Maximum Linear Excursion	X_{max}	mm	1.65
Test Spectrum Bandwidth	150Hz - 18kHz		12 0	IB/Oct	Ferrofluid Type	FF		N/A
					Transducer Size	-	inch	2
on Band Sensitivity Tolerance					Transducer Mass	-	kg	0.138

Frequency and Impedance Response:

